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Thus, a map calculated with the weighted 
coefficients Fw=2W Fo-[F~[ will provide the full 
scattering signal with the correct phase, plus addi- 
tional random and systematic noise that has been 
minimized if the true phase is unknown, 

(2wFo - Fc) exp ia~ = F,. exp ia,, + F~ exp iac 
(true signal at full strength) 

+ ( F2,, - ( F ~ ) ) /  Fc exp iot~ 
(minimal systematic noise) 

+Fro exp i ( - a , ,+2ac )  
(random noise). 
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Abstract 

A new method for the decomposition of a set of start 
phases in two subsets is described. The decomposition 
enables the derivation of the subsets that have good 
values of some figures of merit to different ones with 
nearly the same value. By this operation a new set of 
start phases is obtained for the next refinement pro- 
cess. The method presented can be used as a simple 
but useful extension of the advanced program systems 
for the solution of the phase problem by direct 
methods. 

1. Introduction 

Each direct-method routine consists in forming some 
real function G(~p) of the phase set ¢ and in generat- 
ing a limited number of sets ~Pl, • • •, ~Pr of phases for 
which the values G(¢i)  are close to the value expected 
for the correct solution estimated by the statistical 
theory. 

The function G(¢ )  can be, for example, some 
combination of good figures of merit. We denote by 
V the range of the function G. V is a subset of an 
n-dimensional hypercube, 

V = l l x . . . x l , ,  
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where n is the number of unknown phases, /j is an 
interval (-zr,  zr) in the case of general phases or two 
values (that differ by zr) for special phases. 

Let the function G be chosen such that, for the 
correct phase set ~o*, the value G(~o*) can be expected 
to be very small, i.e. the routine has to generate 'the 
best' minima of G. 

The most important component  of a direct-method 
routine is a transformation P:  V ~  V. For some start- 
ing set ~0 e V this transformation derives a set of 
phases P ( ¢ )  c V for which a small value of G[P(~o)] 
can be expected. As an example of P we can consider 
the traditional tangent procedure. Let D c  V be a 
subset of all the sets of starting phases used as the 
arguments of function P. D may be, for example, a 
result of the magic-integer procedure (White & 
Woolfson, 1975) or it may be identical to V [see, for 
example, the ' random approach'  of Yao (1981)]. If 
P is based on developing phase values directed by a 
'convergence map'  (Germain, Main & Woolfson, 
1970) from a small subset of fixed (origin definition) 
and trial phases then D is constructed by setting 
arbitrary acceptable values to the remaining phases. 
The direct-methods routine is completely described 
by the triad {D, P, G}; the pair {D, P} determines 
which phase sets may be produced by means of this 
routine. 
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Let C c V be a subset of all 'correct' phase sets in 
the sense that in the interpretation of correct sets a 
reasonable fragment or all non-hydrogen atoms can 
be recognized. S denotes all the start sets for all the 
acceptable generated solutions, i.e. ~ ~ S if and only 
if P ( ¢ ) e  C. U denotes all the uninterpretable gener- 
ated results with values of figures of merit better than 
those of all correct solutions, i.e. ~ ~ U if and only 
if G [ P ( ¢ ) ]  < g * ,  where g* is the minimal value of 
G(¢)  for all ~ e P(S) ,  where P(S)  denotes the set of 
all results of the application of the transformation 
function P to all the phase sets from S. Note that we 
have to interpret S and U not only to reflect the 
quality of the direct-methods routine but also the 
quality of the experimental data. 

The purpose of this contribution is to improve the 
advanced direct-method routines in the case when S 
and U are small compared with D and S is not empty. 
This means that the quality of experimental data and 
the use of the statistical theory is adequate for this 
case, but the minimization process based on the 
arbitrary choice of the starting sets from D ('brute- 
force approach') will probably be unsuccesful for 
limited computer time. 

2. Decomposition 

We will suppose the following. 
(i) V is equal to D (the transformation function 

is defined for the same sets as function G). 
(ii) The transformation P is stable, i.e. P[P(~p)] = 

P(~)  for all ~ ~ D. 
(iii) The transformation P is realized as a searching 

process for local minima of the function G. 
(iv) G(~p) can be expressed as a function of a 

vector Y, where for each j the value Yj(~) is given 
by the modulo 2zr of a linear combination of a small 
number of phases with coefficients equal to 1 or -1.  
Hence there is a function t~ with the property 
t~[ Y(~)] = G(~)  for each ~. Yj may be, for example, 
a triplet or quartet relationship. 

All these suppositions are not necessary; they are 
only aids to simplify later considerations and all 
are acceptable for current direct-methods routines. 
The main problem of the application of direct 
methods results from too many local minima of the 
functions G. 

The random generation of starting sets for minimiz- 
ation processes ('the refinement of random phases') 
may be successful only if the region S of sets from 
which the minimization procedure converges to the 
correct solution ~* is sufficiently wide (i.e. the radius 
of convergence is great). In the opposite case, we can 
use the strategy of improvement upon the minima 
already found. 

The problem is how to change the values of phases 
and keep the value of the function G small. A possible 
solution (K~f~., 1989) is based on the change of a 

sufficient number of phases and the simultaneous 
change of only a small number of values Yj. This 
decomposition enables setting arbitrary values to 30- 
35% of the phases and keeping the values of about 
50-70% of triplets. 

We can expect better results if we restrict the values 
for the changed phases as follows. Let N be an 
n-dimensional vector of components 0 or zr. Let 
be a phase set that has good values of figures of merit 
and let ~o (N) = (g3 + N) mod 2rr. The values Yj(~o (N)) 
are equal to either Yj(ff) or Yj(ff)+ rr. They remain 
unchanged when Yj depend on an even number of 
changed phases. This is in contrast to the decomposi- 
tion scheme given by Kff~ (1989). In this scheme the 
value Yj remains unchanged only when Yj does not 
depend on the changed phases. 

3. A simple algorithm for the decomposition of the sets 
of phases 

The problem is how to divide suboptimally all the 
phases into two subsets for the determination of the 
vector N. At first we define the weight as 

w(N)= ~. wjIYj(N)- Y,(Z)I, 
j = l  

where Z is the vector of all the components that are 
equal to zero and wj is an estimate of how a change 
of the value Yj affects the value of (~[ Y(tp)]. The 

n 
quotient w ( N ) / ( r r  ~j=l wj) expresses the (weighted) 
number of changed components of the vector 
Y(¢ + N) in comparison with Y(~p). 

~ J )  p(J) Let e ~j~ be the vector defined by Cj = 7r and _; = 0 
for j ~ i. The algorithm for the generation of the 
vectors N with a small weight may be designed quite 
simply with the following five steps. 

Step 1. Generate the vector N randomly. 
Step 2. Determine the index k with the property 

w( N W e(k)) <- w( N + e ~°) for i=  1 , . . . ,  n. 

Step 3. If w ( N ) >  w ( N + e  ~k~) and the number of 
nonzero phases of vector N + e ~k) is greater than n/3,  
replace N by ( N +  e ~k)) mod 2zr and return to step 2. 

Step 4. Store vector N and repeat steps 1-4 a large 
number of times (e.g. 300). 

Step 5. Select a subset of different vectors with 
minimal weights from the stored vectors. 

4. The shift from good local minima 

Let N (k) for k = 1 , . . . ,  n be a set of shifting vectors 
with a small weight w ( N  (k)) and let the value G(ff) 
be small. We can expect the values G(~  + N ~k)) to 
be small too and we can expect that the phase sets 
t p ( k ) : P ( t ~ + N  (k)) will probably be better local 
minima than those obtained by the application of 
function P to the randomly generated starting sets. 
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Note that since ( N ( k ) + N  ~k)) mod 2rr is a zero 
vector, the phase set P[P(~ + N (k)) - t -N (k)] is expec- 
ted to be nearly identical to ft. Analogously for N <k) = 
(N<~)+ N °)) mod 27r we can expect P(~+ N ~k)) to 
be very close to P I P ( I f +  N~))+ N °)] or to P I P ( I f +  
N °)) + N<~)]. It is useful to take heed of this fact in 
the implementation of step 5 of the algorithm and to 
generate sets of shifting vectors that are not only 
different but also 'independent'. 

centrosymmetric approximation) is presented by K[i~. 
(1992). The form of centrosymmetric approximation 
is derived from Cochran's (1955) distribution. 
Examples (of real structures) show that there are a 
number of independent shifting vectors that change 
about 50% of phases and keep about 90% of triplet 
invariants unchanged. Further numerical experiments 
show that we can expect similar results for other 
combinations of phases, for example, the traditional 
tangent formula or quartets. 

5. Application 

The decomposition scheme presented may be simply 
incorporated into the direct-methods routines. It was 
verified with real structures by the program system 
TRYMIN90 .  This system and a detailed definition 
of the form of the function (~ used here (the so-called 
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Abstract 

The accuracy of lattice-parameter measurements is 
defined by the actual error of Bragg-angle determina- 
tion. The total error in the angular position deter- 
mined (peak position) - corresponding to the Bragg 
angle - depends on the experiment itself (physical 
and geometrical aberrations) and on the method of 
calculation used. The aim of this paper is to find the 
best method of approximation of the measurement 
data to ensure a given accuracy - here, 1 part in 106 
- with the assumption that the technique and the 
method used for correcting the aberrations allow this 
accuracy. Considering some disadvantages of inter- 
polation and approximation with polynomials, com- 
monly used in practice, it is suggested the calculations 
are based on a model of the measured diffraction 
profile. In the present paper (paper I), desired proper- 
ties of such a model are discussed. Various possible 
descriptions of the diffraction profile - including 
popular 'shape functions' widely used in practice - 
are collected in a unified and standardized form and 
ch~ssified and analysed, with account taken of (i) 
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physical aspects, (ii) mathematical aspects, (iii) statis- 
tical aspects and (iv) practical aspects (applications), 
with premises resulting from the measurement 
method, the Bond method [Bond (1960). Acta Cryst. 
13, 814-818]. A special emphasis has been put on the 
best description of the moderate asymmetry charac- 
terizing the reflections from nearly perfect single 
crystals and on statistical properties of the model. 

1. The problem 

1.1. Precision and accuracy of the lattice-spacing 
determination 

To ensure a given accuracy IAdl/d of the lattice- 
parameter determination, the error, dO, in the Bragg 
angle, 0, cannot exceed that resulting from differenti- 
ation of the Bragg law, i.e. 

Id01 <-- (IAdl/d) tan 0. (1) 

For example, to achieve the accuracy of 1 part in 106 
of the dl~l-spacing measurement of a silicon single 
crystal when Cu Ka radiation is used, the error in 0 
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